INCORPORATION OF MOLECULAR OXYGEN DURING THE BIOSYNTHESIS OF

UBIQUINONE IN AN AEROBIC BACTERIUM, Pseudomonas desmolytica

K. Uchida and K. Aida

Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Received October 18, 1971

Summary

By using ¹⁸0₂, it was shown that two atoms from atomospheric oxygen are incorporated into a ubiquinone-9 molecule during biosynthesis by <u>Pseudomonas desmolytica</u>. Separate chemical experiments proved that both oxygen atoms in carbonyl groups of the ubiquinone molecule will exchange with water, while the two ¹⁸0 atoms incorporated do not, in 0.2N HCl at 85°C.

These experiments lead to the conclusion that the molecular oxygens are incorporated into two methoxy groups linked to C-5, 6 of the quinone ring. The importance of the cooperative relationship between respiratory system and oxygenation system in oxygen metabolism of bacteria is emphasized.

It is well known that ubiquinones occure in highly aerobic tissues and aerobic organisms (1), and is associated with electron transport and oxidative phosporylation. Folkers and collaborators proposed a scheme of ubiquinone formation in a photosynthetic anaerobe, Rhodospiriluum rubrum (2), which was recently supported by Whistance et al. for various facultative and aerobic bacteria including Pseudomonads (3).

On the other hand, the ubiquinone contents in facultative microorganisms such as Escherichia coli and Saccharomyces cerevisiae change markedly with the amount of oxygen supplied during their growth (1, 4). Furthermore, cell suspensions of anaerobically grown yeast will synthesize ubiquinone upon aeration (5). These observations suggest that ubiquinones not only are closely related to oxygen metabolism but also molecular oxygen is essential for their own bio-

synthesis. There has been no experimental evidence, however, for the incorporation of molecular oxygen during the biosynthesis of ubiquinone.

The present communication concerns the direct utilization of molecular oxygen as a substrate for ubiquinone biosynthesis in Pseudomonas desmolytica, and the position of incorporated oxygen atoms in the ubiquinone molecule.

Methods and Materials

 $\frac{18}{0_2}$ and $\frac{18}{0}$: $\frac{18}{0_2}$ was prepared by electrolysis of $\frac{18}{0}$ 0 (46% 0-18, 0.13% 0-17) purchased from Miles Laboratories, and mixed with ordinary $\frac{0}{2}$ gas before use. $\frac{18}{2}$ 0 used in the experiment of "oxygen-exchange reaction" was purchased from Bio Rad Laboratories.

Culture condition: Pseudomonas desmolytica IAM1508 was selected from a number of aerobic bacteria because it is rich in ubiquinone (6). The bacteria were grown in specially designed 7.3L closed-culture-flask containing 1.5L of medium of the following composition: glucose 2, casamino acid 0.5, yeast extract 0.5, $(NH_4)_2SO_4$ 0.1, K_2HPO_4 0.15, KH_2PO_4 0.05, and $MgSO_47H_2O$ 0.05 per cent respectively, under rotary shaking and at 30°C for 29 hrs. The $^{18}O_2$ enriched gas phase was composed of 25% of O_2 and 75% of N_2 .

Extraction and purification of ubiquinone: 1.5g (dry wt.) of lyophilized cells were extracted three times with a mixture of ether and ethanol (3:1). The ubiquinone was separated from other lipids by acetone fractionation, and purified by alumina column chromatography (7). Finally, the ubiquinone was crystallized from ethanol at -10° C.

Mass analysis: The mass spectra were measured by using a Model RMU-6D mass spectrometer of Hitachi Co., Ltd. The ¹⁸0 contents in the ubiquinone were determined by scanning repeatedly the spectra of pyrylium ion (m/e 235) or benzylium ion (m/e 197), and the relative intensity of the peaks positioned at +1~+6 to the base peak (m/e 235 or m/e 197) was calculated. CEC 21-620A mass spectrometer of the Consolidated Electrodynamics Corp. was used for analyzing ¹⁸0, in gas phase.

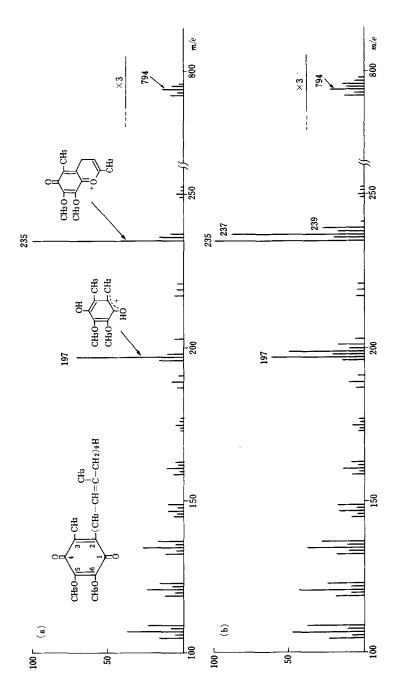


Fig 1 Mass spectra of the ubiquinone from Ps. desmolytica of ordinary shaken culture (a), and closed culture under nitrogenoxygen gas mixture containing 32.3% oxygen-18 (b).

Oxygen-exchange reaction: The reaction mixture consisted of 0.5 mg of ubiquinone-9 (or ubiquinone-9-180), 0.18 ml H₂¹⁸0(or H₂¹⁶0), 0.02 ml 2N-HCl and 2 ml absolute ethanol. Microtubes (150 mm x 12 mm) containing the above reaction mixture were cooled with liquid nitrogen, and sealed under reduced pressure. After five-hours' incubation at 85°C, the ampoules were opened, and the contents were evaporated to dryness at low temperature. The ubiquinone was crystallized from absolute alcohol and subjected to mass spectrometry.

Results and Discussions

In the mass spectra of ubiquinones, there is a small parent peak, and two dominant peaks positioned at m/e 197 and m/e 235, and assigned as benzylium ion and pyrylium ion, respectively. Those fragments contain the four oxygen atoms of the ring moiety of the original ubiquinone (8, 9). The ubiquinone of \underline{P} . desmolytica from ordinary shake-culture revealed the same characteristic fragmental pattern in the mass spectrum as previously reported (8, 10). This type of the quinone is assigned as ubiquinone-9 (UQ_9) from the molecular peak m/e 794 (Fig. 1a).

The mass spectrum of pure crystalline ubiquinone obtained from the cells of P. desmolytica grown in the presence of ¹⁸0₂ clearly showed new additional peaks at +2, +4 to m/e 235 or m/e 197; this is considered as the result of the incorporation of ¹⁸0 into the ubiquinone (Fig. 1b). The number of ¹⁸0 atoms incorporated was calculated from the relative intensity at region m/e 235 (7, 8 -dimethoxy-2, 5-dimethyl-6-cyclohexadienone-1-pyrylium ion). This value corresponds well with the interpretation that two oxygen atoms incorporate from molecular oxygen into a ubiquinone molecule (Table 1).

A ubiquinone molecule contains four oxygen atoms; two nuclear carbonyl oxygens at C-1, 4 and two methoxy oxygens linked to C-5, 6 of quinone ring. We examined the oxygen atoms derived from molecular oxygen in the isolated ¹⁸0-containing ubiquinone by means of "oxygen-exchange method". Many investigations of oxygen exchange in organic compounds with solvent show that carbonyl groups

oretical
value*
100
95.4
22.7
0

Table I Relative peak height of the pyrylium ions of isolated ubiquinone from Ps. desmolytica

*: This value is based on the interpretation of two oxygen-atoms' incorporation, and calculated as follow:

M: M+2: $M+4 = (100-32.3)^2$: $32.3 \times (100-32.3) \times 2$: 32.3^2

Table II Relative peak height of the pseudomonad's UQ9-18O after chemical reaction

M/E	before reaction	after reaction
235	100	100
+2	87.7	91.3
+4	28.1	27.2

exchange with water rather easily, while hydroxyl or ether groups do not (11). The chemical exchange of oxygen atom between ubiquinone and water was clearly observed when UQ_9^{-16} 0 was incubated with H_2^{-18} 0 in 0.2N HCl acid solution at 85°C. However, UQ_9^{-18} 0 biosynthesized by the bacterium showed no decrease in 180 contents after incubated with H_2^{-16} 0 under the same condition (Table II). Therefore, it can be concluded that UQ_9^{-18} 0 contains the labeled oxygens in the two methoxy groups but not in the carbonyl groups. The carbonyl oxygen at C-1 is believed to be introduced directly from the hydroxyl group of p-hydroxybenzoic acid, a precursor of ubiquinone.

It is proved here that two methoxy oxygen atoms at C-5, 6 of the quinone ring of ubiquinone-9 are derived from molecular oxygen. The quinoid oxygen atoms of menaquinone-9 were recently reported not to be derived from molecular oxygen in Mycobacterium phlei (12). The above findings can also explain the gradual restoration of respiration in facultative organisms and the lower ubiquinone contents of cells grown at low oxygen tension. For example, culture of $\underline{\mathbf{E}}$. $\underline{\mathbf{coli}}$ and other facultative bacteria has the tendency to reduce ubiquinone contents when grow at low 0_2 tension but menaquinone contents increase (13), and respiration

of Saccharomyces cerevisiae can be only gradually restored to its maximum rate when changed from anaerobic condition. It may be expected that ubiquinone biosynthesis is one of the important rate-limiting factors in oxygen adaptation process in these organisms. In heme biosynthesis 0, fixation does not take place, though the process obligately needs oxygen not merely as electron acceptor but as biochemical reagent (14, 15). It is worthy of attention that a cooperative relationship exists between respiration where 0, serves as electron acceptor and the oxygenation systems in which 0, serves as a building materials.

A different system which introduces oxygen atoms into ubiquinone precursor must be existed in a photosynthetic anaerobe, R. rubrum, for cell suspensions of this organism under illumination convert p-hydroxybenxoic acid to ubiquinone anaerobically, perhaps through another "oxygen donor" (16). We are now determining whether ubiquinone biosynthesis in R. rubrum grown aerobically in darkness utilizes molecular oxygen.

Acknowledgements

Appreciation is expressed to Dr. T. Uemura for his useful suggestions. The authors thank Mr. Aizawa and Mr. A Ishibashi for their technical assistance with mass spectrometry.

References

- 1. Lester, R. L. and Crane, F. L.: J. Biol. Chem., 234, 2169 (1959).
- 2. Friis, P., Daves, G. D. and Folkers, K.: J. Amer, Chem. Soc., 88, 4754, (1966).
- 3. Whistance, G. R., Dillon, J. F. and Threlfall, D. R.: Biochem, J., 111, 461 (1966).
- 4. Polglase, W. H., Pun, W. T. and Withaar, J.: Biochem. Biophys. Acta, 118, 425 (1966).
- 5. Sugimura, T. and Rudney, H.: Biochem. Biophys. Acta, 37, 560 (1960).
- 6. Kawaji, H., Uchida, K. and Aida, K.: Unpublished data.
- 7. Whistance, G. R., Threlfall, D. R. and Goodwin, T. W.: Biochem. J., 105, 145 (1967).
- 8. Muraca, R. F., Whittick, J. S., Daves, G. D., Friis, P. and Folkers, K.: J. Amer. Chem. Soc., <u>89</u>, 1505 (1967).
- 9. Morimoto, H., Shima, T., Imada, I., Sasaki, M. and Ouchida, A.: Liebigs. Ann. Chem., 702, 137 (1967).
- 10. Yamada, Y., Aida, K. and Uemura, T.: J. Gen. Appl. Microb., 15, 181 (1969).
- 11. Samuel, D.: In Oxygenases ed. by Hayaishi, O. (Academic Press, New York, 1962), p.31.
- 12. Snyder, C. D. and Rapoport, H.: Biochemistry, 9, 2033 (1970).
 13. Whistance, G. R. and Threlfall, D. T.: Biochem. J., 108, 505, (1968).
- 14. Sano, S. and Granick, S.: J. Biol. Chem., 236, 1173 (1961).
 15. Goldfine, H.: J. Gen. Physiol. 49, 253 (1965).
- 16. Parson, W. W. and Rudney, H.: Proc Natl. Acad. Sci. U.S., 53, 599 (1965).